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Abstract—This paper presents the application of a physics-
inspired algorithm based on the center of mass concept, called
Bilevel Centers Algorithm (BCA), to deal with bilevel optimiza-
tion problems. The center of mass is adopted for creating new
directions in the bilevel continuous search space considering the
objective function values of a set of randomly-chosen solutions
in a hierarchical optimization structure. The performance of this
approach is assessed by using representative test functions for
bilevel optimization. The obtained results are compared against
the state-of-the algorithm BLEAQ. The results based on accuracy
and number of evaluations are competitive and promising.

I. INTRODUCTION

A new kind of optimization problem has been gaining
interest by researchers in recent years. That problem was
introduced in 1934 by Von Stackelberg in [1] and it is
known nowadays as the Bilevel Optimization (BO) problem. A
BO problem can be unconstrained, constrained, single and/or
multi-objective, continuous and/or discrete, etc. but in any
type it contains a nested optimization problem as a constraint
[2], [3]. Such introduced hierarchical structure can be useful
to model decision-making processes, where a leader(upper
level authority) optimizes their goals restricted to optimal
decisions/solutions given by a follower (lower level authority)
[4], [5], [6], [7], [8].

In order to formally introduce BO problems, we start by
stating the traditional optimization problem. It is well known
that, without loss of generality, an optimization problem can
be defined as finding the set:

X∗ = argmin
~x∈X

f(~x) (1)

= {~x∗ ∈ X : f(~x∗) ≤ f(~x), ∀~x ∈ X},

where a bounded below function f , i.e., f(x∗) > −∞ is
called objective function. X is a D-dimensional parameter
space, usually X ⊂ RD is the domain for ~x representing
constraints on allowable values for ~x. Eq. 1 may be read as:
X∗ is the set of values (arguments) ~x = ~x∗ that minimizes
f(~x) subject to X∗ (see Figure 1).

An optimization problem is solved only when a global
minimum is found. However, global minimum are, in general,
difficult to find. Therefore, in practice, we often have to find
at least a local minimum [9], [10].

Fig. 1. Single-objective optimization problem.

After the above definitions, a general single-objective BO
problem with single-objective functions at both levels can be
defined as follows [2], [3]:
Minimize

F (~x, ~y) ~x ∈ X, ~y ∈ Y (2)

subject to:

~y ∈ argmin{f(~x, ~y) : gj(~x, ~y) ≤ 0, j = 1, . . . , J} (3)
Gk(~x, ~y) ≤ 0, k = 1, . . . ,K (4)

where F : X×Y → R and f : X×Y → R are the upper-level
objective function (leader) and lower-level objective function
(follower), respectively. In this work, X ⊆ Rn and Y ⊆ Rm

are considered. Here, G and g are the inequality constraints
of the upper and lower levels, respectively. Figure 2 shows a
schematic diagram of a BO problem.

In 1992, Hansen et al. probed that BO problems are
(strongly) NP-hard because evaluating a solution in the sim-
plest BO problem (unimodal linear programming at both
levels) is also NP-hard [11], [12]. Moreover, many real-world
problems can be naturally modeled as BO problems [13],
for example: taxation, border security problems, transportation
problems, machine learning algorithms tuning, among others
[2], [13], [14].

Due to the importance of BO, many authors have proposed
different kind of solutions for those problems e.g. mathemat-
ical approaches (mathematical programming, Karush-Kuhn-
Tucker condition for single-level reduction) [3], [15], evolu-
tionary computation (genetic algorithms, evolution strategies)
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Fig. 2. Diagram of a bilevel optimization problem. Here, y∗ is defined as in
Eq. (3). Note that (x, y∗) is a feasible solution.

and swarm intelligence (particle swarm optimization) [16],
[17], [18].

In order to handle BO problems three strategies are iden-
tified: (1) nested, (2) single-level reduction and (3) penalty
methods. Nested strategies can be effective but with a high
computational cost when objective functions are expensive to
calculate or when high-dimensionality is present. Single-level
reduction is used to transform a BO problem into a single-
level problem, usually via Karush-Kuhn-Tucker conditions for
smooth lower level objective function. As a consequence,
this strategy is restricted to differentiable functions [3], [19].
Penalty methods transform a constrained method into an
unconstrained optimization problem by adding some penalties
controlled by using parameters. This strategy can be simple
to understand but hard to calibrate particularly in large-scale
problems [20], [21].

From the literature review above mentioned, regarding
population-based metaheuristics for BO problems, most re-
search efforts are focused on evolutionary computation and
swarm intelligence algorithms because they have been suc-
cessfully applied to solve single-level optimization problems.
On the other hand, in recent years, physics-inspired algorithms
have become popular to solve complex optimization problems
and they have provided a competitive performance when
solving single-level optimization problems [22].

This is the main motivation of this research work, where
a first proposal of a physics-inspired algorithm, originally
designed for global optimization [23], is now presented to deal
with BO problems. Here, an unconstrained nested scheme is
considered.

Our approach is called Bilevel Centers Algorithm (BCA)
and it is based on the center of mass concept [23]. Without
loss of generality, we assume a maximization problem for
non-negative functions f and F for lower and upper objective
functions, respectively. The center of mass concept is used in
both levels, in order to generate new biased directions towards
promising/feasible regions of the search space.

This paper is organized as follows: Section II presents
the lower level optimizer which uses the center of mass
concept to promote a biased search to promising search space
regions. The proposed approach is detailed in Section III.
After that, Section IV shows the experimental design and the
corresponding results and discussions about the performance
of the proposed approach, where a state-of-the-art for BO
optimization is used for comparison purposes. The conclusions
and future work of this research are described in Section V
and Section VI, respectively.

II. LOWER LEVEL OPTIMIZER

The center of mass is the unique point ~c at the center of
a mass distribution U = {~u1, ~u2, . . . , ~uK} in a space that
has the property that the weighted sum of K position vectors
relative to this point is zero [23], as indicated in Eq. 5:

K∑
i=1

m(~ui)(~ui − ~c) = 0, implies ~c =
1

M

K∑
i=1

m(~ui)~ui, (5)

where m(~ui) is the mass of ~ui and M is the sum of the masses
of vectors in U . Here, m is a non-negative function.

Thus, the lower level optimizer works as follows: for each
solution ~yi in the population P = {~y1, ~y2, . . . , ~yN} of N
solutions in Y , we generate Ui ⊂ P with K different solutions
such that

N⋃
i=1

Ui = P.

Next, from Ui the center of mass ~ci is computed by using Eq.
5 considering m(~u) = f(~p, ~u), where ~p is given by the upper
level optimizer. After that, the worst element ~uworst in Ui is
selected according to the following rule:

~uworst ∈ argmin{f(~p, ~u) : ~u ∈ Ui}.

Now, we are able to generate a direction to locate a new
solution ~qi using the already generated center of mass ~ci, the
current solution ~yi and the worst solution ~uworst by using Eq.
6:

~qi = ~yi + ηi(~ci − ~uworst), (6)

Due to this stochastic strategy, this variation operator can
help the exploration-exploitation process to avoid premature
convergence because it combines the center of mass as an
attractor to promising regions of the search space but using the
position of the worst solution as a reference to get far away
from it [23]. The replacement operator works as follows: if ~qi
is better than ~yi, then the worst element in P is replaced by
~qi.

A linear reduction of the population size (deleting the worst
elements) is applied. The initial population size is N(0) = K∗
D and the final population size N(T ) = 2∗K (for successfully
generating the center of mass). Thus, the population size over
time is as in Eq. 7:

N(t) = KD − (KD − 2K)t

T
= K

(
D − (D − 2)t

T

)
, (7)
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where t = 0, 1, 2, . . . , T and T is the maximum number of
iterations.

The procedure for the implementation of the lower level
optimizer is detailed in Algorithm 1.

Algorithm 1 Lower Level Optimizer pseudocode
Input: upper level parameter ~p, K = 7, ηmax = 2

1: N ← K ∗D
2: Initialize a population P ⊂ Y with N elements
3: while the end criterion is not achieved do
4: for each ~y in P do
5: Generate a subset U ⊂ P with K solutions
6: Calculate ~c using U with (5)
7: η ← rand(0, ηmax)
8: Compute ~q using Eq. (6)
9: if f(~p, ~y) < f(~p, ~q) then

10: Replace worst element in P with ~q
11: end if
12: end for
13: Resize P with Eq. 7
14: end while
15: return the best solution in P

III. BCA

Here, BCA is presented as the upper lower level optimizer.
We start describing the variation operator of BCA and its
properties. Let F and f be defined as in Eq. (2) and Eq.
(3), respectively. Without loss of generality we can assume
that both F and f are non-negative and we want to maximize
them. Hence, the population for a BO problem can be defined
as in Eq. 8:

P = {(~x1, ~y1), (~x2, ~y2), . . . , (~xN , ~yN )} ⊂ X × Y, (8)

where ~yi ∈ argmin{f(~xi, ~z) : ~z ∈ Y } for i = 1, . . . , N .
Here, ~xi is generated at random with uniform distribution.

A. Algorithm Description

Now, we are able to describe the BCA procedure: for each
iteration and each solution (~xi, ~yi) ∈ P , a new upper level
parameter is generated using the formulation in Eq. 9:

~pi = ~xi + ηi(~ci − ~uworst), (9)

where the ~ci is the center of mass computed using:

~ci =
1

W

∑
(x,y)∈U

Q(~x, ~y) · ~x, W =
∑

(x,y)∈U

Q(~x, ~y), (10)

where Q(~x, ~y) = F (~x, ~y) + f(~x, ~y), U ⊂ P such that
card(U) = K and ~uworst is the first coordinate of the worst
element in U , see Eq. 11.

~uworst ∈ argmin{Q(~u, ~y) : ~u ∈ Ui} (11)

Note that the function Q(~x, ~y) is used to translate the upper
level population towards regions where F is maximized while
f may control the bias to feasible solutions.

Fig. 3. Diagram of BCA. Here, x1, . . . , xK are used to compute better upper
level parameters ~p. Note that (xi, y

∗
i ) and (~p, ~q) represent feasible solutions.

Finally, the new solution is given by (~p, ~q) which may re-
place the worst solution in P if it is better than (~xi, ~yi). Here,
~q = argmin~z∈Y f(~p, ~z) obtained by applying Algorithm 1.
Figure 3 shows a representation of BCA solution update.

The BCA approach requires the definition of three parame-
ter values: K, ηmax and the population size. Here, K is useful
to handle the multi-modality, i.e., large K values provide fast
convergence to local optima (useful for unimodal functions).
When K takes small values, BCA favors an exploratory
process. ηmax mainly controls the exploratory process as the
stepsize is controlled by this parameter. The parameter setting
recommended by preliminary experiments is K = 7 and
ηmax = 2.

BCA is summarized in Algorithm 2. This proposed algo-
rithm was used to solve a set of eight test problems to assess
the performance of BO algorithms, known as SMD problems.
Those test problems are described in [17], [24], [25].

IV. EXPERIMENTS AND DISCUSSION

The configuration used in BCA for the experiments per-
formed was as follows: The number of Function Evaluations
(NFEs) was fixed for the upper level: 500DUL = 2500, and
the lower level: 500DUL ∗ 500DLL = 6, 250, 000 total NFEs
for both levels. The remaining parameters were set as follows:
• Upper level dimension DUL = 5
• Lower level dimension DLL = 5
• Upper level population size K ∗DUL

• Lower level population size K ∗DLL

• K = 7
• ηmax = 2
• Stop condition: BCA stopped when the accuracy (1 ×

10−4) or the maximum NFEs allowed was reached.
BCA was compared against BLEAQ which is a state-of-

the-art evolutionary algorithm for BO problems [13], [26].
BLEAQ is based on quadratic approximations of optimal lower
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Algorithm 2 BCA pseudocode
1: N ← K ∗D
2: Generate and evaluate start population P with N elements
3: while the end criterion is not achieved do
4: for each (~x, ~y) in P do
5: Generate a subset U ⊂ P such that card(U) = K
6: Calculate ~c using U with Eq. (10)
7: η ← rand(0, ηmax)
8: Calculate ~p using Eq. (9)
9: Find ~q ∈ argmin

~z∈Y
f(~p, ~z) by using Algorithm 1

10: if G(~x, ~y) < G(~p, ~q) then
11: Replace worst element in P with (~p, ~q).
12: end if
13: end for
14: Resize P with Eq. 7
15: end while
16: Report best solution in P

level variables with respect to the upper level variables. Such
strategy lets BLEAQ to reduce the NFEs having competitive
results. BLEAQ was run with the parameters suggested by the
authors [13], [26] and the stop criteria was maintained but
accuracy was set at 1 × 10−4 as in BCA. Both algorithms
were used to solve independently 31 times each test problem.

TABLE I
UPPER LEVEL ACCURACY STATISTICS BY BCA OBTAINED FROM 31

INDEPENDENT RUNS.

Best Median Mean Worst Std.
SMD1 1.51E–05 5.35E–05 5.28E–05 8.34E–05 1.90E–05

SMD2 1.50E–05 4.68E–05 5.88E–05 3.11E–04 5.13E–05

SMD3 1.57E–05 5.51E–05 2.40E–04 3.54E–03 6.60E–04

SMD4 4.09E–08 4.90E–05 6.20E–05 3.01E–04 6.70E–05

SMD5 2.30E–05 5.03E–05 4.78E–05 8.33E–05 1.74E–05

SMD6 1.57E–01 1.90E+01 2.59E+01 1.40E+02 2.95E+01

SMD7 9.34E–01 9.75E–01 1.19E+00 3.81E+00 6.00E–01

SMD8 1.58E–05 6.49E–05 1.83E–04 2.23E–03 4.11E–04

TABLE II
LOWER LEVEL ACCURACY STATISTICS BY BCA OBTAINED FROM 31

INDEPENDENT RUNS.

Best Median Mean Worst Std.
SMD1 2.67E–06 2.06E–05 2.14E–05 4.75E–05 9.77E–06

SMD2 3.56E–06 1.81E–05 2.07E–05 4.60E–05 1.15E–05

SMD3 1.87E–07 2.24E–05 3.12E–04 4.31E–03 9.28E–04

SMD4 6.23E–06 3.65E–05 1.53E–04 7.96E–04 2.33E–04

SMD5 2.50E–06 2.01E–05 2.19E–05 4.55E–05 1.28E–05

SMD6 3.91E–04 2.86E–02 4.23E–02 1.84E–01 4.35E–02

SMD7 3.71E+02 3.74E+02 3.74E+02 3.75E+02 1.01E+00

SMD8 1.18E–06 2.33E–05 6.53E–05 7.93E–04 1.44E–04

Tables I and II show the statistical results of the accuracy
values obtained by the proposed BCA in the two levels of each

TABLE III
UPPER LEVEL NFES STATISTICS BY BCA OBTAINED FROM 31

INDEPENDENT RUNS.

Best Median Mean Worst Std.
SMD1 1244 1526 1539.42 1879 152.119

SMD2 1244 1481 1482.84 2501 220.7

SMD3 1365 1526 1647.84 2501 287.517

SMD4 1169 1435 1437.26 1800 131.393

SMD5 1317 1526 1554.42 1898 137.766

SMD6 2501 2501 2501 2501 0

SMD7 2501 2501 2501 2501 0

SMD8 1780 2219 2234.65 2501 206.959

TABLE IV
LOWER LEVEL NFES STATISTICS BY BCA OBTAINED FROM 31

INDEPENDENT RUNS.

Best Median Mean Worst Std.
SMD1 3110000 3815000 3848548.4 4697500 380298.6

SMD2 3110000 3702500 3707096.8 6252500 551750.7

SMD3 3412500 3815000 4119596.8 6252500 718793.3

SMD4 2922500 3587500 3593145.2 4500000 328481.3

SMD5 3292500 3815000 3886048.4 4745000 344415.4

SMD6 6252500 6252500 6252500 6252500 0

SMD7 6252500 6252500 6252500 6252500 0

SMD8 4450000 5547500 5586612.9 6252500 517397.6

TABLE V
MEDIAN NFES VALUES BY BCA AND BLEAQ OBTAINED FROM 31

INDEPENDENT RUNS.

Upper Level Lower Level

BCA BLEAQ BCA BLEAQ

SMD1 1526 1600 3815000 116088
SMD2 1481 1925 3702500 113504
SMD3 1526 1630 3815000 122542
SMD4 1435 1750 3587500 70906
SMD5 1526 3031 3815000 147289
SMD6 2501 1016 6252500 7055
SMD7 2501 2104 6252500 130195
SMD8 2219 5569 5547500 289886

BO test problem. Moreover, the best, median, mean, worst and
standard deviation values of the NFEs required to solve each
BO test problem using BCA are given in Table III and IV for
each level, respectively. Tables V and VI compare the median
accuracy and NFEs at the upper and lower levels required by
BCA against those values obtained by BLEAQ. A result in
boldface indicates the best value found.

From Tables I and II it can be observed that BCA is able to
consistently reach very competitive results in all test problems
for both levels. Just problem SMD7 was difficult to solve by
BCA.

A similar robust performance was observed by BCA in
the upper level regarding NFEs as indicated in Table III. In
contrast, more variation in the number of NFEs was reported
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TABLE VI
MEDIAN ACCURACY VALUES BY BCA AND BLEAQ OBTAINED FROM 31

INDEPENDENT RUNS.

Upper Level Lower Level

BCA BLEAQ BCA BLEAQ

SMD1 5.35E–05 9.91E–05 2.06E–05 6.72E–05

SMD2 4.68E–05 2.82E–04 1.81E–05 3.84E–04

SMD3 5.51E–05 4.96E–06 2.24E–05 6.26E–06
SMD4 4.90E–05 1.54E–04 3.65E–05 6.12E–04

SMD5 5.03E–05 1.62E–04 2.01E–05 3.08E–04

SMD6 1.90E+01 1.46E–13 2.86E–02 8.66E–16
SMD7 9.75E–01 9.76E–02 3.74E+02 1.25E+02
SMD8 6.49E–05 7.46E–03 2.33E–05 5.63E–03

in Table IV for the lower level.
Regarding the comparison against the state-of-the-art al-

gorithm, from Table VI it can be concluded that BCA out-
performed BLEAQ in five BO test problems in the upper
level and also in five BO test problems in the lower level.
Furthermore, BCA required less NFEs in the upper level of
six BO test problems based on Table V. However, BLEAQ
clearly outperformed BCA in the number of lower level NFEs
as indicated in the same Table V.

Note that no statistical test was used to compare the algo-
rithms, since the obtained values (from the objective functions)
may not represent feasible solutions and that can be an unfair
comparison of the performance of the algorithms.

V. CONCLUSIONS

This work presented the adaptation of a physics-inspired
algorithm based on the center of mass (BCA) to solve bilevel
optimization problems. Both levels used a similar variation
operator based on the center of mass to find promising regions
of the search space and a greedy replacement based on
fitness. BCA is a simple algorithm which requires just three
parameters to be fine-tuned by the user (the population size,
the size of the subset to compute the center of mass and the
stepsize for the variation operator). Eight test problems were
solved to assess the performance of the proposed algorithm in
terms of upper/lower level accuracy and function evaluations
compared against a state-of-the-art evolutionary algorithm
for BO. The overall results suggest that BCA was able to
provide competitive results in terms of accuracy compared to
those obtained by BLEAQ even requiring less evaluations in
the upper level. However BLEAQ outperformed BCA with
respect to the number of evaluations required at the lower
level. Additional resources (code, tutorials, etc.) about bilevel
optimization can be found at https://bi-level.org.

VI. FUTURE WORK

The future paths of research are the following: carry out
a study in order to approximate feasible solutions at the
lower level to decrease number of evaluations required and
explore some penalty methods to transform the nested scheme
into a single level optimization problem. Study or propose a

technique to compare the algorithm performance for bilevel
optimization problems.
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